-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLowLatencyLogger.ino
688 lines (659 loc) · 19.7 KB
/
LowLatencyLogger.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/**
* This program logs data to a binary file. Functions are included
* to convert the binary file to a csv text file.
*
* Samples are logged at regular intervals. The maximum logging rate
* depends on the quality of your SD card and the time required to
* read sensor data. This example has been tested at 500 Hz with
* good SD card on an Uno. 4000 HZ is possible on a Due.
*
* If your SD card has a long write latency, it may be necessary to use
* slower sample rates. Using a Mega Arduino helps overcome latency
* problems since 12 512 byte buffers will be used.
*
* Data is written to the file using a SD multiple block write command.
*/
//=============================================================================
int buttonRec = 9; //buttonRec will start/finishing dataloggings and recording BIN file
int buttonCvt = 8; //buttonCvt will convert latest BIN file into csv file
int buttonIdk = 7; //It is for a button I just installed for further functionallity which is not determinded. Idk means I don't know.
//=============================================================================
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#include "UserTypes.h"
#ifdef __AVR_ATmega328P__
#include "MinimumSerial.h"
MinimumSerial MinSerial;
#define Serial MinSerial
#endif // __AVR_ATmega328P__
//==============================================================================
// Start of configuration constants.
//==============================================================================
// Abort run on an overrun. Data before the overrun will be saved.
#define ABORT_ON_OVERRUN 0
//------------------------------------------------------------------------------
//Interval between data records in microseconds.
const uint32_t LOG_INTERVAL_USEC = 25000;
//------------------------------------------------------------------------------
// Set USE_SHARED_SPI non-zero for use of an SPI sensor.
// May not work for some cards.
#ifndef USE_SHARED_SPI
#define USE_SHARED_SPI 0
#endif // USE_SHARED_SPI
//------------------------------------------------------------------------------
// Pin definitions.
//
// SD chip select pin.
const uint8_t SD_CS_PIN = 4;
//
// Digital pin to indicate an error, set to -1 if not used.
// The led blinks for fatal errors. The led goes on solid for
// overrun errors and logging continues unless ABORT_ON_OVERRUN
// is non-zero.
#ifdef ERROR_LED_PIN
#undef ERROR_LED_PIN
#endif // ERROR_LED_PIN
const int8_t ERROR_LED_PIN = -1;
//------------------------------------------------------------------------------
// File definitions.
//
// Maximum file size in blocks.
// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.
// This file is flash erased using special SD commands. The file will be
// truncated if logging is stopped early.
const uint32_t FILE_BLOCK_COUNT = 256000;
//
// log file base name if not defined in UserTypes.h
#ifndef FILE_BASE_NAME
#define FILE_BASE_NAME "data"
#endif // FILE_BASE_NAME
//------------------------------------------------------------------------------
// Buffer definitions.
//
// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT-1 additional
// buffers.
//
#ifndef RAMEND
// Assume ARM. Use total of ten 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 10;
//
#elif RAMEND < 0X8FF
#error Too little SRAM
//
#elif RAMEND < 0X10FF
// Use total of two 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 2;
//
#elif RAMEND < 0X20FF
// Use total of four 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 4;
//
#else // RAMEND
// Use total of 12 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 12;
#endif // RAMEND
//==============================================================================
// End of configuration constants.
//==============================================================================
// Temporary log file. Will be deleted if a reset or power failure occurs.
#define TMP_FILE_NAME FILE_BASE_NAME "##.bin"
// Size of file base name.
const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;
const uint8_t FILE_NAME_DIM = BASE_NAME_SIZE + 7;
char binName[FILE_NAME_DIM] = FILE_BASE_NAME "00.bin";
SdFat sd;
SdBaseFile binFile;
// Number of data records in a block.
const uint16_t DATA_DIM = (512 - 4)/sizeof(data_t);
//Compute fill so block size is 512 bytes. FILL_DIM may be zero.
const uint16_t FILL_DIM = 512 - 4 - DATA_DIM*sizeof(data_t);
struct block_t {
uint16_t count;
uint16_t overrun;
data_t data[DATA_DIM];
uint8_t fill[FILL_DIM];
};
//==============================================================================
// Error messages stored in flash.
#define error(msg) {sd.errorPrint(&Serial, F(msg));fatalBlink();}
//------------------------------------------------------------------------------
//
void fatalBlink() {
while (true) {
SysCall::yield();
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
delay(200);
digitalWrite(ERROR_LED_PIN, LOW);
delay(200);
}
}
}
//------------------------------------------------------------------------------
// read data file and check for overruns
void checkOverrun() {
bool headerPrinted = false;
block_t block;
uint32_t bn = 0;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Checking overrun errors - type any character to stop"));
while (binFile.read(&block, 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
if (!headerPrinted) {
Serial.println();
Serial.println(F("Overruns:"));
Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));
headerPrinted = true;
}
Serial.print(bn);
Serial.print(',');
Serial.print(binFile.firstBlock() + bn);
Serial.print(',');
Serial.println(block.overrun);
}
bn++;
}
if (!headerPrinted) {
Serial.println(F("No errors found"));
} else {
Serial.println(F("Done"));
}
}
//-----------------------------------------------------------------------------
// Convert binary file to csv file.
void binaryToCsv() {
uint8_t lastPct = 0;
block_t block;
uint32_t t0 = millis();
uint32_t syncCluster = 0;
SdFile csvFile;
char csvName[FILE_NAME_DIM];
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
// Create a new csvFile.
strcpy(csvName, binName);
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");
if (!csvFile.open(csvName, O_WRONLY | O_CREAT | O_TRUNC)) {
error("open csvFile failed");
}
binFile.rewind();
Serial.print(F("Writing: "));
Serial.print(csvName);
Serial.println(F(" - type any character to stop"));
printHeader(&csvFile);
uint32_t tPct = millis();
while (!Serial.available() && binFile.read(&block, 512) == 512) {
uint16_t i;
if (block.count == 0 || block.count > DATA_DIM) {
break;
}
if (block.overrun) {
csvFile.print(F("OVERRUN,"));
csvFile.println(block.overrun);
}
for (i = 0; i < block.count; i++) {
printData(&csvFile, &block.data[i]);
}
if (csvFile.curCluster() != syncCluster) {
csvFile.sync();
syncCluster = csvFile.curCluster();
}
if ((millis() - tPct) > 1000) {
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);
if (pct != lastPct) {
tPct = millis();
lastPct = pct;
Serial.print(pct, DEC);
Serial.println('%');
}
}
if (Serial.available()) {
break;
}
}
csvFile.close();
Serial.print(F("Done: "));
Serial.print(0.001*(millis() - t0));
Serial.println(F(" Seconds"));
}
//-----------------------------------------------------------------------------
void createBinFile() {
// max number of blocks to erase per erase call
const uint32_t ERASE_SIZE = 262144L;
uint32_t bgnBlock, endBlock;
// Delete old tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("Deleting tmp file " TMP_FILE_NAME));
if (!sd.remove(TMP_FILE_NAME)) {
error("Can't remove tmp file");
}
}
// Create new file.
Serial.println(F("\nCreating new file"));
binFile.close();
if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {
error("createContiguous failed");
}
// Get the address of the file on the SD.
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
// Flash erase all data in the file.
Serial.println(F("Erasing all data"));
uint32_t bgnErase = bgnBlock;
uint32_t endErase;
while (bgnErase < endBlock) {
endErase = bgnErase + ERASE_SIZE;
if (endErase > endBlock) {
endErase = endBlock;
}
if (!sd.card()->erase(bgnErase, endErase)) {
error("erase failed");
}
bgnErase = endErase + 1;
}
}
//------------------------------------------------------------------------------
// dump data file to Serial
void dumpData() {
block_t block;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.println(F("Type any character to stop"));
delay(1000);
printHeader(&Serial);
while (!Serial.available() && binFile.read(&block , 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
Serial.print(F("OVERRUN,"));
Serial.println(block.overrun);
}
for (uint16_t i = 0; i < block.count; i++) {
printData(&Serial, &block.data[i]);
}
}
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
// log data
void logData() {
createBinFile();
recordBinFile();
renameBinFile();
}
//------------------------------------------------------------------------------
void openBinFile() {
char name[FILE_NAME_DIM];
strcpy(name, binName);
Serial.println(F("\nEnter two digit version"));
Serial.write(name, BASE_NAME_SIZE);
for (int i = 0; i < 2; i++) {
while (!Serial.available()) {
SysCall::yield();
}
char c = Serial.read();
Serial.write(c);
if (c < '0' || c > '9') {
Serial.println(F("\nInvalid digit"));
return;
}
name[BASE_NAME_SIZE + i] = c;
}
Serial.println(&name[BASE_NAME_SIZE+2]);
if (!sd.exists(name)) {
Serial.println(F("File does not exist"));
return;
}
binFile.close();
strcpy(binName, name);
if (!binFile.open(binName, O_RDONLY)) {
Serial.println(F("open failed"));
return;
}
Serial.println(F("File opened"));
}
//------------------------------------------------------------------------------
void recordBinFile() {
const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1;
// Index of last queue location.
const uint8_t QUEUE_LAST = QUEUE_DIM - 1;
// Allocate extra buffer space.
block_t block[BUFFER_BLOCK_COUNT - 1];
block_t* curBlock = 0;
block_t* emptyStack[BUFFER_BLOCK_COUNT];
uint8_t emptyTop;
uint8_t minTop;
block_t* fullQueue[QUEUE_DIM];
uint8_t fullHead = 0;
uint8_t fullTail = 0;
// Use SdFat's internal buffer.
emptyStack[0] = (block_t*)sd.vol()->cacheClear();
if (emptyStack[0] == 0) {
error("cacheClear failed");
}
// Put rest of buffers on the empty stack.
for (int i = 1; i < BUFFER_BLOCK_COUNT; i++) {
emptyStack[i] = &block[i - 1];
}
emptyTop = BUFFER_BLOCK_COUNT;
minTop = BUFFER_BLOCK_COUNT;
// Start a multiple block write.
if (!sd.card()->writeStart(binFile.firstBlock())) {
error("writeStart failed");
}
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Logging - type any character to stop"));
bool closeFile = false;
uint32_t bn = 0;
uint32_t maxLatency = 0;
uint32_t overrun = 0;
uint32_t overrunTotal = 0;
uint32_t logTime = micros();
while(1) {
// Time for next data record.
logTime += LOG_INTERVAL_USEC;
//=========================for standalone logger==========
if (digitalRead(buttonRec) == LOW)
{
closeFile = true;
}
//=========================================================
if (Serial.available()) {
closeFile = true;
}
if (closeFile) {
if (curBlock != 0) {
// Put buffer in full queue.
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
} else {
if (curBlock == 0 && emptyTop != 0) {
curBlock = emptyStack[--emptyTop];
if (emptyTop < minTop) {
minTop = emptyTop;
}
curBlock->count = 0;
curBlock->overrun = overrun;
overrun = 0;
}
if ((int32_t)(logTime - micros()) < 0) {
error("Rate too fast");
}
int32_t delta;
do {
delta = micros() - logTime;
} while (delta < 0);
if (curBlock == 0) {
overrun++;
overrunTotal++;
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
}
#if ABORT_ON_OVERRUN
Serial.println(F("Overrun abort"));
break;
#endif // ABORT_ON_OVERRUN
} else {
#if USE_SHARED_SPI
sd.card()->spiStop();
#endif // USE_SHARED_SPI
acquireData(&curBlock->data[curBlock->count++]);
#if USE_SHARED_SPI
sd.card()->spiStart();
#endif // USE_SHARED_SPI
if (curBlock->count == DATA_DIM) {
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
}
}
if (fullHead == fullTail) {
// Exit loop if done.
if (closeFile) {
break;
}
} else if (!sd.card()->isBusy()) {
// Get address of block to write.
block_t* pBlock = fullQueue[fullTail];
fullTail = fullTail < QUEUE_LAST ? fullTail + 1 : 0;
// Write block to SD.
uint32_t usec = micros();
if (!sd.card()->writeData((uint8_t*)pBlock)) {
error("write data failed");
}
usec = micros() - usec;
if (usec > maxLatency) {
maxLatency = usec;
}
// Move block to empty queue.
emptyStack[emptyTop++] = pBlock;
bn++;
if (bn == FILE_BLOCK_COUNT) {
// File full so stop
break;
}
}
}
if (!sd.card()->writeStop()) {
error("writeStop failed");
}
Serial.print(F("Min Free buffers: "));
Serial.println(minTop);
Serial.print(F("Max block write usec: "));
Serial.println(maxLatency);
Serial.print(F("Overruns: "));
Serial.println(overrunTotal);
// Truncate file if recording stopped early.
if (bn != FILE_BLOCK_COUNT) {
Serial.println(F("Truncating file"));
if (!binFile.truncate(512L * bn)) {
error("Can't truncate file");
}
}
}
//------------------------------------------------------------------------------
void recoverTmpFile() {
uint16_t count;
if (!binFile.open(TMP_FILE_NAME, O_RDWR)) {
return;
}
if (binFile.read(&count, 2) != 2 || count != DATA_DIM) {
error("Please delete existing " TMP_FILE_NAME);
}
Serial.println(F("\nRecovering data in tmp file " TMP_FILE_NAME));
uint32_t bgnBlock = 0;
uint32_t endBlock = binFile.fileSize()/512 - 1;
// find last used block.
while (bgnBlock < endBlock) {
uint32_t midBlock = (bgnBlock + endBlock + 1)/2;
binFile.seekSet(512*midBlock);
if (binFile.read(&count, 2) != 2) error("read");
if (count == 0 || count > DATA_DIM) {
endBlock = midBlock - 1;
} else {
bgnBlock = midBlock;
}
}
// truncate after last used block.
if (!binFile.truncate(512*(bgnBlock + 1))) {
error("Truncate " TMP_FILE_NAME " failed");
}
renameBinFile();
}
//-----------------------------------------------------------------------------
void renameBinFile() {
while (sd.exists(binName)) {
if (binName[BASE_NAME_SIZE + 1] != '9') {
binName[BASE_NAME_SIZE + 1]++;
} else {
binName[BASE_NAME_SIZE + 1] = '0';
if (binName[BASE_NAME_SIZE] == '9') {
error("Can't create file name");
}
binName[BASE_NAME_SIZE]++;
}
}
if (!binFile.rename(binName)) {
error("Can't rename file");
}
Serial.print(F("File renamed: "));
Serial.println(binName);
Serial.print(F("File size: "));
Serial.print(binFile.fileSize()/512);
Serial.println(F(" blocks"));
}
//------------------------------------------------------------------------------
void testSensor() {
const uint32_t interval = 200000;
int32_t diff;
data_t data;
Serial.println(F("\nTesting - type any character to stop\n"));
// Wait for Serial Idle.
delay(1000);
printHeader(&Serial);
uint32_t m = micros();
while (!Serial.available()) {
m += interval;
do {
diff = m - micros();
} while (diff > 0);
acquireData(&data);
printData(&Serial, &data);
}
}
//------------------------------------------------------------------------------
void setup(void) {
//==============================================================================
//for standalone logger
pinMode(buttonRec, INPUT_PULLUP);
pinMode(buttonCvt, INPUT_PULLUP);
pinMode(buttonIdk, INPUT_PULLUP);
//==============================================================================
if (ERROR_LED_PIN >= 0) {
pinMode(ERROR_LED_PIN, OUTPUT);
}
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
Serial.print(F("\nFreeStack: "));
Serial.println(FreeStack());
Serial.print(F("Records/block: "));
Serial.println(DATA_DIM);
if (sizeof(block_t) != 512) {
error("Invalid block size");
}
// Allow userSetup access to SPI bus.
pinMode(SD_CS_PIN, OUTPUT);
digitalWrite(SD_CS_PIN, HIGH);
// Setup sensors.
userSetup();
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
sd.initErrorPrint(&Serial);
fatalBlink();
}
// recover existing tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("\nType 'Y' to recover existing tmp file " TMP_FILE_NAME));
while (!Serial.available()) {
SysCall::yield();
}
if (Serial.read() == 'Y') {
recoverTmpFile();
} else {
error("'Y' not typed, please manually delete " TMP_FILE_NAME);
}
}
}
//------------------------------------------------------------------------------
void loop(void) {
if (digitalRead(buttonRec) == LOW)
{
logData();
}
if (digitalRead(buttonCvt) == LOW)
{
binaryToCsv();
}
// // Read any Serial data.
// do {
// delay(10);
// } while (Serial.available() && Serial.read() >= 0);
// Serial.println();
// Serial.println(F("type:"));
// Serial.println(F("b - open existing bin file"));
// Serial.println(F("c - convert file to csv"));
// Serial.println(F("d - dump data to Serial"));
// Serial.println(F("e - overrun error details"));
// Serial.println(F("l - list files"));
// Serial.println(F("r - record data"));
// Serial.println(F("t - test without logging"));
// while(!Serial.available()) {
// SysCall::yield();
// }
//#if WDT_YIELD_TIME_MICROS
// Serial.println(F("LowLatencyLogger can not run with watchdog timer"));
// SysCall::halt();
//#endif
//
// char c = tolower(Serial.read());
//
// // Discard extra Serial data.
// do {
// delay(10);
// } while (Serial.available() && Serial.read() >= 0);
//
// if (ERROR_LED_PIN >= 0) {
// digitalWrite(ERROR_LED_PIN, LOW);
// }
// if (c == 'b') {
// openBinFile();
// } else if (c == 'c') {
// binaryToCsv();
// } else if (c == 'd') {
// dumpData();
// } else if (c == 'e') {
// checkOverrun();
// } else if (c == 'l') {
// Serial.println(F("\nls:"));
// sd.ls(&Serial, LS_SIZE);
// } else if (c == 'r') {
// logData();
// } else if (c == 't') {
// testSensor();
// } else {
// Serial.println(F("Invalid entry"));
// }
}