-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
426 lines (316 loc) · 17.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import tensorflow as tf
import numpy as np
import pickle
from PIL import Image, ImageDraw
import scipy
import torch
from torch.utils.serialization import load_lua
import argparse
import random
from tensorflow.python import debug as tf_debug
tfgan = tf.contrib.gan
from conditioning import get_conditioning_vector
from stage_1 import generator_stage1, discriminator_stage1
from stage_2 import generator_stage2, discriminator_stage2
from misc.preprocess_birds import LOAD_SIZE, LR_HR_RATIO, load_bbox
from misc.utils import get_image
BATCH_SIZE = 64
NUM_EVAL = 10
Z_DIM = 100
EMBEDDING_DIM = 128
# output shape of generator images
IMAGE_SHAPE = 64
# size factor for the KL-divergence regularization term
# in the stage 1 generator loss
KL_REG_LAMBDA = 1.0
#NUM_STEPS = 600
NUM_STEPS = -1
DATA_DIR = "./Data/birds"
TRAIN_DIR = DATA_DIR + "/train"
TEST_DIR = DATA_DIR + "/test"
with open(TRAIN_DIR + '/76images.pickle', 'rb') as f:
IMAGES = pickle.load(f, encoding='latin1')
IMAGES = np.array(IMAGES)
print('images: ', IMAGES.shape)
with open(TRAIN_DIR + '/char-CNN-RNN-embeddings.pickle', 'rb') as f:
EMBEDDINGS = pickle.load(f, encoding='latin1')
EMBEDDINGS = np.array(EMBEDDINGS)
print('embeddings: ', EMBEDDINGS.shape)
with open(TRAIN_DIR + '/class_info.pickle', 'rb') as f:
CLASSES = pickle.load(f, encoding='latin1')
NUM_TRAINING_EXAMPLES = IMAGES.shape[0]
# We define the generator loss used in the paper by adding the KL regularization term to
# the standard minimax GAN loss from https://arxiv.org/abs/1406.2661
def custom_generator_loss(gan_model, add_summaries=False):
standard_generator_loss = tfgan.losses.modified_generator_loss(gan_model)
# gan_model.generator_inputs[2] is the KL divergence
kl_div_loss = tf.multiply(KL_REG_LAMBDA, gan_model.generator_inputs[2], name="kl_div_loss")
generator_loss = tf.add(standard_generator_loss, kl_div_loss, name="generator_loss")
if add_summaries:
tf.summary.scalar("kl_div_loss", kl_div_loss)
tf.summary.scalar("generator_loss", generator_loss)
return generator_loss
# discriminator loss with mismatched pairs
def custom_discriminator_loss(gan_model, real_data, batch_mismatched_conditioning_vectors, add_summaries=False):
mismatched_inputs = (gan_model.generator_inputs[0], batch_mismatched_conditioning_vectors, gan_model.generator_inputs[2])
discriminator_real_outputs = gan_model.discriminator_real_outputs,
discriminator_gen_outputs = gan_model.discriminator_gen_outputs,
with tf.variable_scope('Discriminator', reuse=True):
discriminator_mismatched_outputs = gan_model.discriminator_fn(real_data, mismatched_inputs)
#label_smoothing=0.25
label_smoothing=0.2
real_weights=1.0
generated_weights=1.0
reduction=tf.losses.Reduction.SUM_BY_NONZERO_WEIGHTS
with tf.name_scope(None, 'discriminator_minimax_loss', (
discriminator_real_outputs, discriminator_gen_outputs, real_weights,
generated_weights, label_smoothing)) as scope:
# -log((1 - label_smoothing) - sigmoid(D(x)))
loss_on_real = tf.losses.sigmoid_cross_entropy(
tf.ones_like(discriminator_real_outputs),
discriminator_real_outputs, real_weights, label_smoothing, scope,
loss_collection=None, reduction=reduction)
# -log(- sigmoid(D(G(z,h))))
loss_on_generated = tf.losses.sigmoid_cross_entropy(
tf.zeros_like(discriminator_gen_outputs),
discriminator_gen_outputs, generated_weights, scope=scope,
loss_collection=None, reduction=reduction)
# -log(- sigmoid(D(G(z,h_hat))))
loss_mismatched = tf.losses.sigmoid_cross_entropy(tf.zeros_like(discriminator_mismatched_outputs),
discriminator_mismatched_outputs, generated_weights, label_smoothing, scope=scope,
loss_collection=None, reduction=reduction)
loss = loss_on_real + (loss_on_generated + loss_mismatched)/2
tf.losses.add_loss(loss, tf.GraphKeys.LOSSES)
if add_summaries:
tf.summary.scalar('discriminator_gen_minimax_loss', loss_on_generated)
tf.summary.scalar('discriminator_real_minimax_loss', loss_on_real)
tf.summary.scalar('discriminator_mismatched_minimax_loss', loss_mismatched)
tf.summary.scalar('discriminator_minimax_loss', loss)
return loss
def _parse_function(example_proto, image_type='lr'):
if image_type=='lr':
raw_shape = 76
cropped_shape = 64
elif image_type=='hr':
raw_shape = 304
cropped_shape = 256
features = {"embeddings": tf.FixedLenFeature([], tf.string),
"image": tf.FixedLenFeature([], tf.string)}
parsed_features = tf.parse_single_example(example_proto, features)
image = tf.decode_raw(parsed_features['image'], tf.float32)
image = tf.reshape(image, [raw_shape, raw_shape, 3])
# normalize to (-1,1)
image = (image * (2.0/255.0)) - 1.0
# randomly crop from (76, 76, 3) to (64, 64, 3)
image = tf.random_crop(image, [cropped_shape, cropped_shape, 3])
# randomly flip left right w/ 50% probability
image = tf.image.random_flip_left_right(image)
embeddings = tf.decode_raw(parsed_features['embeddings'], tf.float32)
embeddings = tf.reshape(embeddings, [-1,1024])
# randomly sample 4 embeddings and take the average
embeddings = tf.random_shuffle(embeddings)
embeddings = embeddings[:4,:]
avg_embedding = tf.reduce_mean(embeddings, axis=0)
return image, avg_embedding
def map_fn(index):
return tuple(tf.py_func(load_data, [index], [tf.float32, tf.float32, tf.float32]))
def load_data(index, image_type='lr'):
if image_type=='lr':
raw_shape = 76
cropped_shape = 64
elif image_type=='hr':
raw_shape = 304
cropped_shape = 256
image = IMAGES[index]
image = np.reshape(image, [raw_shape, raw_shape, 3])
# normalize to (-1,1)
image = (image * (2.0/255.0)) - 1.0
# randomly crop from (76, 76, 3) to (64, 64, 3)
x = np.random.randint(12)
y = np.random.randint(12)
image = image[x:x+64,y:y+64,:]
image = image.astype(np.float32)
# randomly flip left right w/ 50% probability
flip = np.random.randint(2)
if flip == 1:
image = np.fliplr(image)
embeddings = EMBEDDINGS[index]
# randomly sample 4 embeddings and take the average
np.random.shuffle(embeddings)
embeddings = embeddings[:4,:]
embedding = np.mean(embeddings, axis=0)
# get class of selected image
img_class = CLASSES[index]
# get wrong embeddings (of different class)
wrong_index = np.random.randint(NUM_TRAINING_EXAMPLES)
if img_class == CLASSES[wrong_index]:
wrong_index = (wrong_index + np.random.randint(100, 200)) % NUM_TRAINING_EXAMPLES
j = np.random.randint(10)
mismatched_embedding = EMBEDDINGS[wrong_index][j,:]
return image, embedding, mismatched_embedding
if __name__=="__main__":
parser = argparse.ArgumentParser(description='Train a StackGAN model.')
parser.add_argument('model', help='Whether to train Stage I or Stage I + II. Choose from stage1 or stage2.')
parser.add_argument('logdir', help='Directory for storing/reading checkpoint files.')
parser.add_argument('--mode', default='train', help='Whether to train or predict. Defaults to train')
parser.add_argument('--num_steps', type=int, help='Number of steps to train for.', default=NUM_STEPS)
parser.add_argument('--test_description', help='text description sentence to predict for in eval mode', default=None)
parser.add_argument('--test_embedding', help='path to a test embedding to predict on when in eval mode', default=None)
parser.add_argument('--base_learning_rate', type=int, default=0.0002)
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
if args.model == 'stage1':
generator_function = generator_stage1
discriminator_function = discriminator_stage1
generator_loss_function = custom_generator_loss
#discriminator_loss_function = custom_discriminator_loss_fn
def parse_fn(example_proto):
return _parse_function(example_proto, image_type='lr')
data_filename = '/data_76.tfrecord'
elif args.model == 'stage2':
raise NotImplementedError('Not yet implemented.')
else:
raise ValueError('Invalid model.')
if args.mode == 'train':
"""
train_filenames = [TRAIN_DIR + data_filename]
dataset = tf.data.TFRecordDataset(train_filenames)
dataset = dataset.map(parse_fn, num_parallel_calls=4)
dataset = dataset.repeat()
dataset = dataset.batch(BATCH_SIZE)
iterator = dataset.make_initializable_iterator()
"""
def gen():
for i in range(NUM_TRAINING_EXAMPLES):
yield i
dataset = tf.data.Dataset.from_generator(gen, (tf.int32), (tf.TensorShape([])))
dataset = dataset.map(map_fn, num_parallel_calls=4)
dataset = dataset.repeat()
dataset = dataset.batch(BATCH_SIZE)
iterator = dataset.make_one_shot_iterator()
batch_images, batch_embeddings, batch_mismatched_embeddings = iterator.get_next()
batch_images.set_shape([None,64,64,3])
batch_embeddings.set_shape([None,1024])
batch_mismatched_embeddings.set_shape([None,1024])
batch_images = tf.identity(batch_images, name="batch_images")
batch_embeddings = tf.identity(batch_embeddings, name="batch_embeddings")
batch_mismatched_embeddings = tf.identity(batch_mismatched_embeddings, name="batch_mismatched_embeddings")
# get randomly sampled noise/latent vector
batch_z = tf.random_normal([BATCH_SIZE, Z_DIM], name="batch_z")
# get conditioning vector (from embedding) and KL divergence for use as a
# regularization term in the generator loss
with tf.variable_scope("conditioning_augmentation", reuse=tf.AUTO_REUSE):
batch_conditioning_vectors, kl_div = get_conditioning_vector(batch_embeddings, conditioning_vector_size=EMBEDDING_DIM)
batch_mismatched_conditioning_vectors, _ = get_conditioning_vector(batch_mismatched_embeddings, conditioning_vector_size=EMBEDDING_DIM)
batch_conditioning_vectors = tf.identity(batch_conditioning_vectors, name="batch_conditioning_vectors")
kl_div = tf.identity(kl_div, name="kl_div")
batch_mismatched_conditioning_vectors = tf.identity(batch_mismatched_conditioning_vectors, name="batch_mismatched_conditioning_vectors")
def custom_discriminator_loss_fn(gan_model, add_summaries=False):
return custom_discriminator_loss(gan_model, batch_images, batch_mismatched_conditioning_vectors, add_summaries)
model = tfgan.gan_model(
generator_fn=generator_function,
discriminator_fn=discriminator_function,
real_data=batch_images,
generator_inputs=(batch_z, batch_conditioning_vectors, kl_div))
loss = tfgan.gan_loss(model,
generator_loss_fn=generator_loss_function,
discriminator_loss_fn=custom_discriminator_loss_fn)
global_step = tf.train.get_or_create_global_step()
boundaries = list(range((NUM_TRAINING_EXAMPLES//BATCH_SIZE) * 100, (NUM_TRAINING_EXAMPLES//BATCH_SIZE) * 601, (NUM_TRAINING_EXAMPLES//BATCH_SIZE) * 100))
generator_lr_values = [args.base_learning_rate * (0.5)**i for i in range(6)]
discriminator_lr_values = [i for i in generator_lr_values]
generator_learning_rate = tf.train.piecewise_constant(global_step, boundaries, generator_lr_values, name="generator_learning_rate")
discriminator_learning_rate = tf.train.piecewise_constant(global_step, boundaries, discriminator_lr_values, name="discriminator_learning_rate")
tf.summary.scalar("generator_learning_rate", generator_learning_rate)
tf.summary.scalar("discriminator_learning_rate", discriminator_learning_rate)
generator_optimizer = tf.train.AdamOptimizer(generator_learning_rate, beta1=0.5)
#discriminator_optimizer = tf.train.AdamOptimizer(discriminator_learning_rate, beta1=0.5)
discriminator_optimizer = tf.train.AdamOptimizer(discriminator_learning_rate, beta1=0.5)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
gan_train_ops = tfgan.gan_train_ops(model, loss, generator_optimizer, discriminator_optimizer)
global_step = tf.train.get_or_create_global_step()
train_step_fn = tfgan.get_sequential_train_steps()
# set up image summaries
tf.summary.image('real_images', batch_images)
tf.summary.image('generated_images', model.generated_data)
summary_op = tf.summary.merge_all()
summary_hook = tf.train.SummarySaverHook(save_secs=300,output_dir=args.logdir,summary_op=summary_op)
hooks = [summary_hook]
if args.debug:
hooks.append(tf_debug.LocalCLIDebugHook())
with tf.train.MonitoredTrainingSession(hooks=hooks, checkpoint_dir=args.logdir) as sess:
if NUM_STEPS < 0:
while True:
cur_loss, _ = train_step_fn(sess, gan_train_ops, global_step, train_step_kwargs={})
else:
for i in range(NUM_STEPS):
cur_loss, _ = train_step_fn(sess, gan_train_ops, global_step, train_step_kwargs={})
elif args.mode == 'eval':
if args.test_description and args.test_embedding:
caption = args.test_description
embedding = load_lua('test_embedding.t7').numpy()[0]
elif args.test_description and (not args.test_embedding):
raise ValueError("Both a description and embedding need to be provided.")
elif (not args.test_description) and args.test_embedding:
raise ValueError("Both a description and embedding need to be provided.")
else:
# get class ids as list of len (2933)
with open(TEST_DIR + '/class_info.pickle', 'rb') as f:
class_ids = pickle.load(f)
# load embeddings as numpy array of shape (2933, 10, 1024)
with open(TEST_DIR + '/char-CNN-RNN-embeddings.pickle', 'rb') as f:
embeddings = pickle.load(f,encoding='latin1')
embeddings = np.array(embeddings)
# get list of filenames of len (2933)
with open(TEST_DIR + '/filenames.pickle', 'rb') as f:
list_filenames = pickle.load(f)
# choose a random test image filename
index, filename = random.choice(list(enumerate(list_filenames)))
# get the corresponding captions
with open(DATA_DIR + '/text_c10/' + filename + '.txt', "r") as f:
captions = f.read().split('\n')
captions = [cap for cap in captions if len(cap) > 0]
# randomly select 1 caption and the corresponding embedding
j, caption = random.choice(list(enumerate(captions)))
embedding = embeddings[index][j]
# load the example true image (process as usual down to 76 x 76
lr_size = int(LOAD_SIZE / LR_HR_RATIO)
filename_bbox = load_bbox('Data/birds/')
bbox = filename_bbox[filename]
f_name = 'Data/birds/CUB_200_2011/images/%s.jpg' % filename
img = get_image(f_name, LOAD_SIZE, is_crop=True, bbox=bbox)
img = img.astype(np.float32)
true_img = scipy.misc.imresize(img, [lr_size, lr_size], 'bicubic').astype(np.float32)
print("Caption: ", caption)
# convert the embedding to a tensor and repeat BATCH_SIZE times to shape (BATCH_SIZE, 1024)
embedding = tf.constant(embedding)
batch_embeddings = tf.tile(tf.expand_dims(embedding, axis=0),[BATCH_SIZE,1])
batch_z = tf.random_normal([BATCH_SIZE, Z_DIM])
# get conditioning vector (from embedding) and KL divergence for use as a
# regularization term in the generator loss
# get batch of conditioning vectors of shape (NUM_EVAL, EMBEDDING_DIM)
batch_conditioning_vectors, kl_div = get_conditioning_vector(batch_embeddings, conditioning_vector_size=EMBEDDING_DIM)
with tf.variable_scope('Generator'):
eval_images = generator_function((batch_z, batch_conditioning_vectors, kl_div), is_training=False)
reshaped_eval_imgs = tfgan.eval.image_reshaper(eval_images[:NUM_EVAL,:,:,:], num_cols=NUM_EVAL)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess,tf.train.latest_checkpoint(args.logdir))
# tf.contrib.framework.init_from_checkpoint(args.logdir,{'Generator/': 'Generator/'})
# get out BATCH_SIZE predicted images
eval_images_array = sess.run(reshaped_eval_imgs)
# draw composite image with PIL
# display true image, NUM_EVAL example generated images, and caption
# in a single figure
composite_img = Image.new('RGB', (NUM_EVAL*64 + 200 + 76, 200))
d = ImageDraw.Draw(composite_img)
d.text((20,30), caption, fill=(255,255,0))
if not args.test_description and not args.test_embedding:
true_img = Image.fromarray(true_img.astype(np.uint8))
composite_img.paste(true_img,(50,112))
eval_images_array = Image.fromarray(((eval_images_array[0] + 1.0) * (255.0 / 2.0)).astype(np.uint8))
composite_img.paste(eval_images_array,(176,118))
composite_img.save('eval.png')
else:
raise ValueError('Invalid mode.')