-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstage_2.py
335 lines (291 loc) · 13.1 KB
/
stage_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pickle
tfgan = tf.contrib.gan
# output shape of generator images
IMAGE_SHAPE = 64
# dimension of the compressed embedding/ conditioning vector
# input to both generator and discriminator
EMBEDDING_DIM = 128
# size/num_parameters factor for generator (number of filters)
GENERATOR_DIM = 128
# size/num_parameters factor for discriminator (number of filters)
DISCRIMINATOR_DIM = 64
# NOTE: ordering of Batch norm and ReLU differs from original paper implementation
# see https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md
# here we apply batch normalization after the activation, rather than before as the
# authors did originally in https://arxiv.org/pdf/1612.03242.pdf
# NOTE: Our usage of conv2d layers omits the use of a bias term because in
# the authors' github repo their custom conv2d layer does not use one.
# The motivation behind this is unclear
# residual block used in the stage II generator function
def residual_block(x, is_training=True):
x_0 = x
x_1 = tf.layers.conv2d(x,
filters=GENERATOR_DIM * 4,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.relu)
x_1 = tf.layers.batch_normalization(x_1, training=is_training)
x_1 = tf.layers.conv2d(x_1,
filters=GENERATOR_DIM * 4,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev))
x_1 = tf.layers.batch_normalization(x_1, training=is_training)
# residual connection (see https://arxiv.org/pdf/1512.03385.pdf for motivation)
x_out = tf.add(x_0, x_1)
x_out = tf.nn.relu(x_out)
return x_out
def generator_stage2(x_var, conditioning_vector, is_training=True):
# encode/reduce the input image
# 3 stacked convolutional layers with ReLU activations and batch normalization
# reduces from shape (BATCH_SIZE, 64, 64, 3) to (BATCH_SIZE, 16, 16, GENERATOR_DIM * 4)
x = tf.layers.conv2d(x_var,
filters=GENERATOR_DIM,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.relu)
x = tf.layers.conv2d(x,
filters=GENERATOR_DIM * 2,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.relu)
x = tf.layers.batch_normalization(x, training=is_training)
x = tf.layers.conv2d(x,
filters=GENERATOR_DIM * 4,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev))
x = tf.layers.batch_normalization(x, training=is_training)
# get conditioning vector of shape (BATCH_SIZE, 128)
# and tile to shape (BATCH_SIZE, 16, 16, 128)
c_var = tf.expand_dims(tf.expand_dims(conditioning_vector, 1), 1)
c_var = tf.tile(c_var, [1, IMAGE_SHAPE/4, IMAGE_SHAPE/4, 1])
# concatenate reduced image of shape (BATCH_SIZE, 16, 16, GENERATOR_DIM * 4)
# and expanded conditioning vector (BATCH_SIZE, 16, 16, 128) along 4th dimension to get
# (BATCH_SIZE, 16, 16, GENERATOR_DIM * 4 + 128)
x = tf.concat(3, [x, c_var])
# apply 1 conv layer on the combined tensor (reduced image + expanded conditioning vector)
# outputs (BATCH_SIZE, 16, 16, GENERATOR_DIM * 4)
x = tf.layers.conv2d(x,
filters=GENERATOR_DIM * 4,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev))
x = tf.layers.batch_normalization(x, training=is_training)
# apply 4 residual blocks
# takes in (BATCH_SIZE, 16, 16, GENERATOR_DIM * 4)
# outputs (BATCH_SIZE, 16, 16, GENERATOR_DIM * 4)
x_1 = residual_block(x)
x_2 = residual_block(x_1)
x_3 = residual_block(x_2)
x_4 = residual_block(x_3)
# upsample to high resolution image by alternating convolutions and
# nearest neighbor resizing
# takes in (BATCH_SIZE, 16, 16, GENERATOR_DIM * 4)
# outputs (BATCH_SIZE, 256, 256, 3)
x_5 = tf.image.resize_nearest_neighbor(x_4, [(IMAGE_SHAPE // 2),(IMAGE_SHAPE // 2)])
x_5 = tf.layers.conv2d(x_5,
filters=GENERATOR_DIM * 2,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.relu)
x_5 = tf.layers.batch_normalization(x_5, training=is_training)
x_6 = tf.image.resize_nearest_neighbor(x_5, [IMAGE_SHAPE,IMAGE_SHAPE])
x_6 = tf.layers.conv2d(x_6,
filters=GENERATOR_DIM,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.relu)
x_6 = tf.layers.batch_normalization(x_6, training=is_training)
x_7 = tf.image.resize_nearest_neighbor(x_6, [(IMAGE_SHAPE * 2), (IMAGE_SHAPE * 2)])
x_7 = tf.layers.conv2d(x_7,
filters=(GENERATOR_DIM // 2),
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.relu)
x_7 = tf.layers.batch_normalization(x_7, training=is_training)
x_8 = tf.image.resize_nearest_neighbor(x_7, [(IMAGE_SHAPE * 4), (IMAGE_SHAPE * 4)])
x_8 = tf.layers.conv2d(x_8,
filters=(GENERATOR_DIM // 4),
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.relu)
x_8 = tf.layers.batch_normalization(x_8, training=is_training)
x_out = tf.layers.conv2d(x_8,
filters=3,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.tanh)
return x_out
def discriminator_stage2(image, embedding_vector, is_training=True):
# process embedding vector by passing it through a fully-connected layer
compressed_embedding = tf.layers.dense(embedding_vector, units=EMBEDDING_DIM, activation=tf.nn.leaky_relu)
# expand from shape [BATCH_SIZE, EMBEDDING_DIM] to [BATCH_SIZE, 4, 4, EMBEDDING_DIM]
compressed_embedding = tf.expand_dims(tf.expand_dims(compressed_embedding, 1), 1)
compressed_embedding = tf.tile(compressed_embedding, [1, (IMAGE_SHAPE/16), (IMAGE_SHAPE/16), 1])
# downsample and convolve image input with strided convolutions + batch norm
# from [BATCH_SIZE, 256, 256, 3] to [BATCH_SIZE, 4, 4, DISCRIMINATOR_DIM * 8]
# NOTE: no bias is used and the activation is leaky ReLU
x_0 = tf.layers.conv2d(image,
filters=DISCRIMINATOR_DIM,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 2,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.batch_normalization(x_0, training=is_training)
x_0 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 4,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.batch_normalization(x_0, training=is_training)
x_0 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 8,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.batch_normalization(x_0, training=is_training)
x_0 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 16,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.batch_normalization(x_0, training=is_training)
x_0 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 32,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.batch_normalization(x_0, training=is_training)
# Use 1x1 convolutions to reduce number of channels from DISCRIMINATOR_DIM * 32 to DISCRIMINATOR_DIM * 8
# Shape goes from (BATCH_SIZE, 4, 4, DISCRIMINATOR_DIM * 32) to (BATCH_SIZE, 4, 4, DISCRIMINATOR_DIM * 8)
x_0 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 16,
kernel_size=1,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.batch_normalization(x_0, training=is_training)
x_0 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 8,
kernel_size=1,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_0 = tf.layers.batch_normalization(x_0, training=is_training)
# Apply a residual block
x_1 = tf.layers.conv2d(x_0,
filters=DISCRIMINATOR_DIM * 2,
kernel_size=1,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_1 = tf.layers.batch_normalization(x_1, training=is_training)
x_1 = tf.layers.conv2d(x_1,
filters=DISCRIMINATOR_DIM * 2,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
x_1 = tf.layers.batch_normalization(x_1, training=is_training)
x_1 = tf.layers.conv2d(x_1,
filters=DISCRIMINATOR_DIM * 8,
kernel_size=3,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev))
x_1 = tf.layers.batch_normalization(x_1, training=is_training)
# note residual connection see https://arxiv.org/pdf/1512.03385.pdf for motivation)
x = tf.add(x_0, x_1)
x = tf.nn.leakyrelu(x)
# concatenate together the downsampled image features and the compressed embedding vector along
# the channels dimension to shape [BATCH_SIZE, 4, 4, EMBEDDING_DIM + DISCRIMINATOR_DIM * 8]
x_and_embedding = tf.concat([x, compressed_embedding], axis=3)
# apply conv layers on combined image features and embedding to get discriminator output
# 1x1 convolution outputs [BATCH_SIZE, 4, 4, DISCRIMINATOR_DIM * 8]
output = tf.layers.conv2d(x_and_embedding,
filters=DISCRIMINATOR_DIM * 8,
kernel_size=1,
strides=1,
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation=tf.nn.leaky_relu)
output = tf.layers.batch_normalization(output, training=is_training)
# use kernel of size (4,4) to convolve over entire region and output a single channel dimension
# gives output of shape [BATCH_SIZE, 1, 1, 1], which is essentially a scalar logit.
# It represents the discriminator output probability
output = tf.layers.conv2d(x_0_and_embedding,
filters=1,
kernel_size=(IMAGE_SHAPE // 16),
strides=(IMAGE_SHAPE // 16),
padding="same",
use_bias=False,
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev))
# reduce shape to [BATCH_SIZE,] by removing extra dimensions
output = tf.squeeze(output)
return output