-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDarkMatter.html
144 lines (110 loc) · 5.58 KB
/
DarkMatter.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
layout: default
---
<head>
<title>Search for Dark Matter</title>
<!--cube portfolio-->
<link href="assets/cubeportfolio/css/cubeportfolio.min.css" rel='stylesheet'>
</head>
<section id="content-region-3" class="padding-40 page-tree-bg">
<div class="container">
<h3 class="page-tree-text">
Search for Dark Matter
</h3>
</div>
</section><!--page-tree end here-->
<div class="space-70"></div>
<div class="container">
<div class="row align-items-center">
<div class="col-lg-12">
<h4 class="heading-mini">Enhancing Dark Matter Detection with Simulation: Crystal Defects in a Germanium Detector</h4>
</div>
</div>
</div>
<div class="container">
<div class="row align-items-center">
<div class="col-lg-6">
<p>
Dark matter comprises 27% of the total mass in our universe but it has yet to be identified.
Experimental physicists are working to develop dark matter detectors capable of distinguishing very small energy deposits.
</p>
<br>
<p>Fourth generation detectors utilize germanium crystals, which can be simulated via quantum chemical software to predict how dark matter might interact with the crystal.</p>
<p>Germanium crystal synthesis has its own difficulties, including crystal purity. </p>
<p>The defects and impurities in the crystal detector have distinct impacts on the electronic structure of the material, which will greatly influence its behavior when dark matter interacts with it.</p>
<p>The most common electronically active impurities and crystal defects are simulated to determine the consequences of each. </p>
</div>
<div class="col-lg-6">
<div id="js-grid-slider-thumbnail" class="cbp ">
<div class="cbp-item">
<div class="cbp-caption">
<div class="cbp-caption-defaultWrap">
<img src="assets/img/Astro.png" alt="">
</div>
</div>
</div>
<div class="cbp-item">
<div class="cbp-caption">
<div class="cbp-caption-defaultWrap">
<img src="assets/img/Astro.png" alt="">
</div>
</div>
</div>
<div class="cbp-item">
<div class="cbp-caption">
<div class="cbp-caption-defaultWrap">
<img src="assets/img/Astro.png" alt="">
</div>
</div>
</div>
</div>
</div>
</div> <!--about company row end-->
</div> <!-- container -->
<div class="container">
<div class="row">
<div class="col-md-12">
<div class="space-20"></div>
<p>This collaborative project merges computational chemistry methods with experimental physics. Faculty (Dmitri Kilin and Joel Sander), a post-doctoral researcher (Amy Roberts), and a graduate student (Wendi Sapp) work together on this project.</p>
<hr>
</div>
</div>
</div>
<div class="space-50"></div>
<!-- jQuery plugins. -->
<script src="assets/js/plugins/plugins.js"></script>
<script src="assets/js/app.js"></script>
<script src="assets/cubeportfolio/js/jquery.cubeportfolio.min.js"></script>
<script>
(function ($, window, document, undefined) {
'use strict';
// init cubeportfolio
$('#js-grid-slider-thumbnail').cubeportfolio({
layoutMode: 'slider',
drag: true,
auto: false,
autoTimeout: 5000,
autoPauseOnHover: true,
showNavigation: false,
showPagination: false,
rewindNav: true,
scrollByPage: true,
gridAdjustment: 'responsive',
mediaQueries: [{
width: 0,
cols: 1,
}],
gapHorizontal: 0,
gapVertical: 0,
caption: '',
displayType: 'fadeIn',
displayTypeSpeed: 400,
plugins: {
slider: {
pagination: '#js-pagination-slider',
paginationClass: 'cbp-pagination-active',
}
},
});
})(jQuery, window, document);
</script>